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Abstract. Samples of poly(ethylene terephthalate) with different degrees of crystallinity have
been investigated by dielectric spectroscopy in the frequency range 10−2–107 Hz and in the
temperature range 60◦C–120◦C. The resulting spectra were evaluated within theA3-scenario
of the mode-coupling theory. Quantitative agreement was found between theory and experiment
over a frequency range as large as seven decades in the best case. The scaling laws of the theory
were also tested and it was found that they were only partially obeyed. We argue that the reason
for this is that the limited temperature range and the effect of the activated hopping processes are
not taken into account in the present version of the theory.

1. Introduction

The study of the dynamics of glass-forming liquids and polymers is currently a field of intensive
activity due to many interesting and, in many cases, still unexplained phenomena observed
in these types of material. Due to the complexity and the absence of long-range order in
the systems studied, it is quite difficult to find a theoretical model capable of explaining the
majority of the phenomena observed. Consequently, most of the theories developed so far start
out from some fairly crude assumption about the systems under study. In contrast, the mode-
coupling theory (MCT) originates from the microscopic equations of motion for the particles
in the liquid [1]. The basic quantity in this theory is the normalized density autocorrelation
function:

φ(q, t) = 〈δn(q, t) δn
∗(q, 0)〉

〈|δn(q, 0)|2〉 (1)

wheren(q, t) is the microscopic number density,q the wave-vector modulus,t the time
andδn = n − 〈n〉. The angle brackets indicate ensemble averages. From the asymptotic
solutions of the MCT equations, glass transition singularities are found. These are bifurcation
singularities belonging to the cuspoid family [2, 3]. Close to such singularities and in an
intermediate dynamical region called theβ-relaxation region, between the initial microscopic
decay and the structuralα-process, the factorization property

φ(q, t) = f c(q) + h(q)G(t) (2)

is found to hold, wheref c(q) is the value of the non-ergodicity parameter,f (q) = φ(q, t →
∞), at the singularity. This result is also valid for any correlation functionφAB(q, t) of
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dynamical variablesA andB for which there is some overlap with the density. The implication
of the above expression is that the time dependence is determined entirely by the functionG(t)

which yields a universal dynamical scenario. The functionG(t) satisfies the equation

iδ

z2
− δ0

z
+ δ1G(z) + zG2(z) + (1 + δ2)LT[G2(t)](z)

− γ3z
2G3(z) + (δ3 + γ3)LT[G3(t)](z)

+ γ4z
3G4(z) + (δ4 + γ4)LT[G4(t)](z) + · · ·

+ (−1)kγkz
k−1Gk(z) + (δk + γk)LT[Gk(t)](z) + · · · = 0 (3)

where the Laplace transform is given by

G(z) = LT[G(t)] = i
∫ ∞

0
dt exp(izt)G(t) (4)

in which z is a complex frequency. The parameterδ in the first term in equation (3) is the
hopping parameter, describing the rate of hopping of particles across potential barriers, to be
discussed below. In the present case this parameter is ignored. The above-mentioned glass
transition singularities are classified according to the behaviour of the parametersδk, as follows:
at the singularity,δ0 = δ1 = 0 and ifδ2 6= 0 anA2-singularity or Whitney fold is encountered.
If also δ2 = 0 butδ3 6= 0 anA3-singularity or Whitney cusp singularity has been found, and
so on [2, 3]. The parametersγk are ordinary numbers given byf (q) and the static structure
factor. Each of these singularities introduces its own very specific signature in the dynamical
behaviour of the systems studied. TheA2-scenario, which is the simplest and most thoroughly
studied, predicts a critical temperature,Tc, above whichφ(q, t) shows a two-step decay which
can be approximated by the sum of two power laws with exponents 0< a < 1

2 and 0< b < 1
that are related according to

02(1− a)
0(1− 2a)

= 02(1 +b)

0(1 + 2b)
= λ (5)

where0(x) is the gamma function andλ = 1 + δ2 is the so-called exponent parameter. For
temperatures belowTc, the long-time power law with exponentbwill be replaced by a constant
plateau having the valuef c(q). In the frequency domain, aboveTc, this behaviour corresponds
to a minimum in the imaginary part of the generalized susceptibility

χ ′′(ω) = ω
∫ ∞

0
G(t) cos(ωt) dt (6)

centred at(ωmin, χ
′′
min) and which can be approximated with the interpolation formula

χ ′′(ω) = χ ′′min

a + b

[
b

(
ω

ωmin

)a
+ a

(
ωmin

ω

)b]
. (7)

The two parametersωmin and χ ′′min are in this scenario predicted to have the following
temperature dependence:

ωmin ∝
∣∣∣∣Tc − TTc

∣∣∣∣1/2a (8a)

χ ′′min ∝
∣∣∣∣Tc − TTc

∣∣∣∣1/2 . (8b)

Below Tc, the low-frequency power law is replaced by a white-noise spectrum,χ ′′(ω) ∝ ω.
The consequence of this is that the structuralα-process disappears for temperatures belowTc
and this temperature can thus also be referred to as an ideal glass transition temperature. In
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real systems, however, theα-peak continues to exist at temperatures belowTc. This situation
is taken into account in the MCT by using a non-vanishing parameterδ in equation (3),
representing the effect of activated hopping processes on the dynamics of the system. The
result of the inclusion of this parameter is to replace the sharp transition atT = Tc with a
smooth crossover and as a result theα-peak will still be present forT < Tc.

For the higher-order singularitiesAk, with k > 3, equation (3) has the solution [4]

G(t) = ρ2f (y) (9)

wherey = ln(t/t1), ρ =
[
2π2/3µk(k − 2)2

]1/2(k−2)
, µk = −δk andt1 is introduced in order

to set the timescale of the initial microscopic decay. In theA3-case, which is the focus of
attention in this paper, the functionf (y) is equal to the Weierstrass elliptic function,℘(y),
defined by the elliptic integral

y =
∫ ∞
℘

ds√
4s3− g2s − g3

(10)

in which the separation parametersg` are given byg` = 4δ3−`/µ3ρ
2`.

Since the quantity of interest in the present paper is the dielectric function, the frequency
domain behaviour is of particular importance. For theA3-cusp scenario, the minimum in
χ ′′(ω) found in theA2-scenario will be distorted and forg2 = 0 it will be replaced with
a region of flat dielectric loss [5]. The real and imaginary parts of the dielectric function,
ε(ω) = ε′(ω)− iε′′(ω), can in the present case be written as [5]

ε′(ω) = fε − εc℘ (y; g2, g3) (11a)

ε′′(ω) = −π
2
εc℘

′(y; g2, g3) (11b)

where

℘ ′(y) = d℘/dy = −
√

4℘3(y)− g2℘ − g3

andy = ln(1/ωt1). The parametersfε and εc will be treated as fitting parameters. The
function℘(y) is homogeneous, i.e.℘(y; g2, g3) = s2℘(sy; s−4g2, s

−6g3). This means that
by making a suitable choice of the scaling parameters, in this cases = |g3/4|1/6, the dielectric
function can alternatively be expressed as

ε′(ω) = fε − c′ξ℘
[
y/yξ ;±12(r/4)1/3,±4

]
(12a)

ε′′(ω) = −c′′ξ ℘ ′
[
y/yξ ;±12(r/4)1/3,±4

]
(12b)

wherer = ∣∣g3
2/27g2

3

∣∣. If the parametersg2 andg3 are considered to be coordinates in a
two-dimensional space, a constantr-value will thus define a line along which the solutions
in equations (11), (12) are invariant. In such a coordinate system, the material investigated
will describe a path when physical control parameters such as temperature and degree of
crystallinity are varied. Along a scaling line, the parameters entering equations (12) will have
the following temperature dependence [5]:

1

yξ
∝
∣∣∣∣T − T0

T0

∣∣∣∣1/6 (13a)

c′ξ ∝
∣∣∣∣T − T0

T0

∣∣∣∣1/3 (13b)

c′′ξ ∝
∣∣∣∣T − T0

T0

∣∣∣∣1/2 . (13c)
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Here,T0 is the temperature at which the cusp is reached, i.e. wheng2 = g3 = 0. The line
r = 1 contains the fold singularities and will be crossed by the path taken by the system
whenT = Tc. The testing of these scaling relations is very important for the determination of
the validity of the present theory, and such a test is performed by fitting equations (11) to the
experimental data, thereby extracting theg2-, g3- andr-parameters. Those spectra with similar
r-values are thereafter shifted in the horizontal and vertical directions by multiplication with
the scaling factors in equations (13) in order to collapse them on top of the calculated master
functions in equations (12).

Since it is impossible to analytically evaluate℘(y), we proceeded by numerically
calculating the integral in equation (10) for given values of℘. Sincey = ln(1/ωt1), it was in
this way possible to generate sets of curves for℘ [ln(1/ωt1)]. The dielectric function was then
easily obtained from equation (11). To findg2 andg3 for each spectrum, we took advantage
of the fact that almost every curve measured showed a distinct maximum and minimum. As
described elsewhere [5], the extreme values,ε′′min andε′′max, of the imaginary part of the dielectric
function can then be used to obtain these two parameters, according to

g2 = 3

[
2

π2ε2
c

(ε′′2max− ε′′2min)

]2/3

(14a)

g3 = − 2

π2ε2
c

(ε′′2max + ε′′2min). (14b)

This reduces the number of parameters to vary to two for the imaginary part and three for the
real part. The determination ofr turns out to be even easier, since by virtue of equations (14a),
(14b) and the relation just below equation (12),

r =
[
ε′′2max− ε′′2min

ε′′2max + ε′′2min

]2

. (15)

In this paper, dielectric spectra obtained from measurements on poly(ethylene
terephthalate) samples with varying degrees of crystallinity were evaluated in terms of the
MCT A3-scenario. The choice of PET as a model system was motivated by the ease of
manufacturing samples with varying degree of crystallinity. Because of this, two control
parameters are available and it may therefore be possible to map out a large region of theg2–g3

parameter space. TheA3-scenario has previously been applied to dielectric spectra of this
polymer both in the amorphous [10] and crystalline [5] states. However, in these cases only
the temperature was available as a control parameter.

2. Experimental details

Amorphous poly(ethylene terephthalate) films of thickness 0.25 mm were purchased from
Goodfellow Incorporated, UK. From these films, discs with diameter 25 mm were punched
out. Samples with different degrees of crystallinity were manufactured by annealing at different
temperatures and times; see table 1.

The dielectric measurements were performed in the frequency range 10−2 Hz–10 MHz
using a Schlumberger Solartron 1260 Impedance Gain/Phase Analyzer together with a Chelsea
Dielectric Interface for the frequencies between 10−2 Hz and 1 kHz, a Hewlett-Packard
HP4284A Precision LCR Meter for the range 20 Hz–1 MHz and a Hewlett-Packard HP4285A
LCR Meter between 100 kHz and 10 MHz. The disc-formed samples were painted with
electrically conducting silver paint and put between two stainless steel electrodes. The
temperature was controlled with a Novocontrol Quatro cryosystem, permitting a temperature
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Table 1. Degrees of crystallinity and crystallization conditions for the samples used in the present
study.

Degree of Annealing
Sample No crystallinity (%) temperature and time

1 9 100◦C, 4 h

2 15 100◦C, 7 h

3 26 100◦C, 11 h

4 31 120◦C, 24 h

5 35 160◦C, 24 h

accuracy of within±0.1 ◦C and the sample temperature was measured with a Pt100 resistance
thermometer.

To determine the degree of crystallinity of the samples, differential scanning calorimetry
(DSC) measurements were performed with a Mettler DSC 30 Low Temperature Cell. The
degree of crystallinity was estimated by comparing the areas of the peaks due to recrystallization
and melting normalized to the heat-of-fusion value of 124 J g−1 corresponding to 100%
crystallinity found in the literature [6].

3. Results

Dielectric measurements on PET reveal two relaxation peaks, the lower-frequencyα-peak and
the secondaryβ-peak, seen at higher frequencies [15]. Theα-peak is the manifestation of the
structural relaxation, the freezing in of which leads to the liquid–glass transition. Theβ-peak
can in this case not be explained in terms of side-group motions and is therefore believed
to be of the same origin as the so-called Johari–Goldstein processes [11–14]. The results
of the curve fits to equations (11) are presented in figures 1 and 2 for two of the samples
investigated. To avoid clutter, the curves are truncated at low frequencies where deviations
between theory and experiment start to appear. The fitting parametersfε, εc and t1 should
ideally be temperature independent, but some drift might be expected [5]. In the present
case,fε andεc were found to increase with increasing temperature whilet1 was decreasing.
The timescalet1 was determined to be in the range from 10−11 to 10−10 s. The differences
between the real and imaginary parts as regards the agreement between theory and experiment
are probably due to the theoretical expressions for the dielectric function being asymptotic
solutions and the Kramers–Kronig relations therefore not being expected to be exactly valid.
For sample 2, which has the lower degree of crystallinity, agreement is found between theory
and experiment over a frequency range larger than seven decades. In this case, the theory
is able to describe a large part of theα-peak. This may be expected since the asymptotic
solutions to the MCT include the high-frequency part of theα-peak, which overlaps with the
low-frequency part of theβ-region. Due to the slow variation of this decay in the time domain
in theA3-case, this overlap extends to longer times or lower frequencies in comparison with
theA2-scenario. For sample 4 (figure 2), the low-frequency spectra do not show as good an
agreement between theory and experiment as those for sample 2. One reason for this may be
the influence of higher-order scenarios, i.e.A4. The imaginary part of the dielectric function for
this sample does show more ‘cusp-like’ features, especially at the highest temperature where
an almost horizontal plateau is seen. It is therefore possible that we have here anA3-cusp
within anA4-relaxation scenario. In figure 3 it is clearly seen that the distance to the cusp
singularity located at(g2, g3) = (0, 0) is decreasing with increasing degree of crystallinity.
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Figure 1. (a) The real part and (b) the imaginary part of the dielectric function for sample 2.
Filled triangles: 70◦C; filled diamonds: 75◦C; filled squares: 80◦C; filled circles: 85◦C; open
diamonds: 90◦C; open squares: 95◦C; open circles: 100◦C. Full lines are fits to equation (11).

For all samples, the points obtained move from left to right with decreasing temperature. As
can be seen from this figure, some of the measured spectra do indeed follow common scaling
lines. Since the cusp temperature,T0, is predicted to be lower thanTc, previously determined to
be around 82◦C [10,16–18], spectra at low temperatures are especially interesting. However,
the glass transition temperature is located at around 67◦C for the amorphous sample and is
increasing with increasing degree of crystallinity, and this sets a practical low-temperature
limit at around 70◦C for the measurements since the lowest frequency measured was 10−2 Hz.
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Figure 2. (a) The real part and (b) the imaginary part of the dielectric function for sample 4.
Open down-pointing triangles: 70◦C; open up-pointing triangles: 75◦C; open diamonds: 80◦C;
open squares: 85◦C; open circles: 90◦C; filled down-pointing triangles: 95◦C; filled up-pointing
triangles: 100◦C; filled diamonds: 105◦C; filled squares: 110◦C; filled circles: 115◦C. Full lines
are fits to equation (11).

In figure 4, the rescaled imaginary parts ofε(ω) corresponding to the data points along
the scaling liner = 0.90 are plotted together with the predicted master curve, given by
equation (12b). The calculatedr-values for these curves were within the range 0.90± 0.04.
Even such relatively small deviations produce a rather large scatter and this might be why
especiallyc′′ξ in figure 5 shows quite large fluctuations around a constant value. The timescale
yξ in the same graph is also more or less constant but has less scatter. It is thus not possible to
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Figure 3. The parameter space defined by the two separation parametersg2 andg3. The symbols
represent the five samples. Squares: sample 1; down-pointing triangles: sample 2; circles:
sample 3; up-pointing triangles: sample 4; diamonds: sample 5. The thick full line is the fold
line. Dashed lines are scaling lines forr = 0.10, 0.20, 0.31, 0.40, 0.50, 0.68, 0.79 and 0.96, from
left to right. The thin full line is the scaling line forr = 0.90; see the text.
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Figure 4. Rescaled spectra along the scaling liner = 0.90. Open circles: sample 2, 80◦C; open
squares: sample 2, 83◦C; filled circles: sample 3, 86◦C; filled squares: sample 3, 88◦C; open
diamonds: sample 4, 85◦C; open up-pointing triangles: sample 4, 88◦C; open down-pointing
triangles: sample 5, 80◦C. The full line is the master curve calculated from equation (12b).
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test the scaling-law predictions of equations (13) in this case.
Even for theA3-scenario the minimum inε′′(ω) should follow a square-root law as in

equation (8b). This is tested in figure 6. AboveTc, a plot ofε′′2 should yield a straight line
which is zero atT = Tc. The deviations from the straight line seen in figure 6 at temperatures
close to and belowTc are attributed to activated hopping processes not included in the idealized
theory which serve to smooth out the sharp transition atTc. The values ofTc produced from
this analysis are presented in table 2.

0.000

0.005

0.010

0.015

70 80 90 100 110

ε′
′
m
i
n2

T [¡C]

Figure 6. The squares of the values ofε′′(ω) at the minimum as functions of temperature for
samples 2 (circles) and 4 (squares). The full lines are the best fits to straight lines, yielding
Tc = 82± 2 ◦C for sample 2 andTc = 93± 2 ◦C for sample 4.
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Table 2. Values of the critical temperatureTc for the different PET samples.

Sample No Tc (◦C)

1 82± 2
2 82± 2
3 88± 2
4 93± 2
5 88± 2

4. Discussion

The higher-order glass transition scenarios of the MCT have to date almost exclusively been
observed in dielectric measurements on polymers [5, 8–10]. A cusp scenario has however
recently also been identified in model calculations for a sticky hard-sphere system [7]. One may
argue that the MCT is not applicable to complex systems like PET. It is however important to
realize that the expressions (11), (12) for the dielectric function and also the scaling predictions
of equations (13) are not dependent on the detailed microscopic structure of the system
studied, provided that one can drive it close enough to a singularity [1, 4, 5]. This implies
a universal dynamical scenario for this class of materials. Accordingly, any microscopic
theory for polymer dynamics developed out of a mode-coupling theory will incorporate these
scenarios [19, 20]. This is the justification for applying the MCT to polymeric systems such
as PET. It may be noted that a fairly recent dielectric study of amorphous PET did seem to
corroborate the idea that the MCT is not applicable to PET [17,18]. A further analysis of the
same data showed, however, that the MCT is also applicable in this case [10].

The scaling laws in equations (13) were not obeyed in the present study by the data
obtained from our measurements. There might be many reasons for this situation arising.
For example, the cusp temperature,T0, could be lower than expected, meaning that the
measurements should have been performed at even lower temperatures, and consequently
also lower frequencies, in order to see the entire minimum. In the present case, the limited
sensitivity of the instruments used combined with the low loss of the samples restricted the
frequency range at lower frequencies. The fits might also be disturbed by the presence of
activated hopping processes, which is evident from the fact that theα-peak is still present for
T < Tc and also from figure 3, where for temperatures belowTc, theg2- andg3-parameters
are still located on the left-hand side of the fold line. This means that the spectra for which
T < Tc might have been fitted to a curve actually representingT > Tc in the idealized theory.
The inclusion of a non-vanishing hopping parameter in the MCT equations may modify the
values ofg2 andg3 close to the fold line with the result that better results are produced. At
present, however, equation (3) has not been solved fork = 3 andδ 6= 0.

For the higher-order singularitiesAk, k > 3, the scaling law in equation (8b) should still
apply [5]. This is demonstrated in figure 6 for samples No 2 and No 4. Clearly, the data for
both of these samples are in agreement with this prediction forT > Tc. The differences in the
value ofTc between the samples—see table 2—are due to the fact that the paths taken by the
different systems in theg2–g3 parameter plane are crossing the fold line at different locations;
see figure 3. When moving along the fold line towards the cusp point at(g2, g3) = (0, 0), the
critical temperatureTc will decrease and it will become equal toT0 at the cusp point. Since
the sample with the highest degree of crystallinity has the path closest to the cusp point, one
would expect this to produce the lowest value ofTc. As seen in table 2, this is not the case, and
the reason for this discrepancy might also in this case be that, close to the fold line, activated
hopping processes play an important role and this will change the direction of the path causing



Dielectric measurements on semi-crystalline PET 8817

it to cross the fold line at some other point.
In summary, we find that the MCTA3-scenario is capable of describing the dielectric data

obtained for PET with a varying degree of crystallinity. The scaling laws in equations (13)
predicted for this scenario were however not obeyed and we suggest this to be either due to
the effect of activated hopping processes or because the cusp temperatureT0 was lower than
expected.
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[5] Sjögren L 1991J. Phys.: Condens. Matter3 5023
[6] Coburn J C and Boyd R H 1986Macromolecules192238
[7] Fabbian L, G̈otze W, Sciortino F, Tartaglia P and Thiery F 1999Phys. Rev.E 59R1347
[8] Flach S, G̈otze W and Sj̈ogren L 1992Z. Phys.B 8729
[9] Halalay I 1996J. Phys.: Condens. Matter8 6157
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